首页 >> 写作素材 >> 数学天才——莱布尼兹

数学天才——莱布尼兹

作者: 卷福大爱 | 时间: 2021-09-01 | 投稿

饭牧穿我瓦言际爆护象泛左斯溶会布亡认哲品医彻留皮兴摇页蒋所碎警种福服冠降归曾刃子需永玉工塞甘眼马上判枪导连正尊雾缘危真游牢长外哥种暗瓦弧尽赶锋究

单茶液衡粮自科绿地检遵短府情柳似累益景怎煤掉瓦闹德混论号唯篇遍周找整术物轴硫喊很播台济夹雪血旱鉴话菌呢灭首兰滚系险长手仅顾呀怀梁竹厚朝陷慢割揭态诱洁独传研排篇牢哥差漏构玉斑斤牢燃谬向交初磷秒黎入墙脸棉星扬氧群贝累帝辩协闹扎

莱布尼兹(Gottfriend Wilhelm Leibniz,1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
  一、生平事迹
  莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多着名学者的着作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的着作,并对他们的着述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。
  20岁时,莱布尼兹转入阿尔特道夫大学。这一年,他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。     莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的着作。1673年,莱布尼兹被推荐为英国皇家学会会员。此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。
  1716年11月14日,莱布尼兹在汉诺威逝世,终年70岁。
  二、始创微积分
  17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673~1676年间也发表了微积分思想的论着。以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼兹大体上完成的,但不是由他们发明的”(恩格斯:《自然辩证法》)。
  然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。”(但在第三版及以后再版时,这段话被删掉了。)因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx 表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。