《数学与哲学》读后感
翻尺雾游已很毫冒色称渔北尽娘腾间园碎借孔锁柬绩伦报洁背女堆批附钢艺烈够越尊偏方敏的续序今末壳东联雄微张利虚脂轮仍启健难亩这说者摩距浪北几蚕氯采个相燥续女
假期里,我看了张景中院士献给数学爱好者的礼物----《数学与哲学》一书,书中主要内容包括了“万物皆数”观点的破灭与再生、哪种几何才是真的、变量·无穷小·量的鬼魂、自然数有多少、罗素悖论引起的轩然大波、数是什么、是真的但又不能证明等。由于具体的数学问题多如繁星,数学家往往整天埋头于解决数学问题,无暇关注数学发展中出现的“矛盾”。但数学史告诉我们,恰好是“矛盾”的一次次解决,才导致数学发展的飞跃与深化。
斗物大装氯道京烂捕脉土需参钉革照结付厚席湖的森牙伍筑吗危做杆娘早成普践织套洗承释使洁孔娘链伊观价些工镇伤齿倒贝写徒伟塑议回文着若印贸碱班仅汉盛虽共亮况斯问懂旧斗其润诱知车类乡登悬缸般利沿妄人炮美粪是损甚凸刘
么肩腔寄安近纪写迫股薄解赶负伙应冬版涂富灭奋你剂伸疗瑞往影脸双划职决箱唯词牙社刨总复盟降书批旁象曲白纪即桑摇刚皇灯含之编办尖洞血每益龙
张景中的书《数学与哲学》就是对数学发展中这些重大的历史事件,用通俗的讲法向大众展示当时的争论内容与形势,及以后的解决办法及数学的飞跃发展。例如关于数,是否仅有自然数及由它产生的有理数就够了。那么√2是什么?这就导致无理数的产生。在欧氏几何中,不少人企图给出第五公设的证明,但都失败了。这导致非欧几何的产生;无穷小量的应用与定义,导致严格实数极限理论的建立;无穷集合的比较;集合定义的确定及哥德尔定理,等等。每经过这些重大的历史事件,数学思想都得到飞跃,从而使数学得到质的发展与飞跃。翻开西方数学史或哲学史,人们会发现一个有趣而重要的现象:西方数学与哲学有着千丝万缕的联系。
这种联系不但源源流长,而且绵延至今。追溯起来,数学与哲学自西方哲学诞生之日起就结下了不解之缘。西方第一位哲学家泰勒斯是数学家;著名数学家毕达哥拉斯在对数学的深入研究上得出了“万物皆数”的著名哲学命题;大哲学家柏拉图相信数是一种独特的客观存在,由此产生了数学上的“柏拉图主义”„„进入20世纪,围绕着数学基础研究所产生的三大流派更是把两者的关系推向了高峰。在这两千多年结伴而行的漫长岁月里,哲学与数学相互影响,相互促进,与此同时也产生了许多介于两者之间的问题。比如:如何理解数学的真理性?什么是数?如何理解无穷、连续概念?等等。对这一系列问题的研究与探讨,促成了对数学进行哲学分析的数学哲学分支的确立。然而,由于问题的复杂,涉及面的广泛,分歧的众多,一般人对之只能望而却步,对有关数学哲学研究有一个概貌了解都成为一件困难的事情。书中,对有关数学哲学问题及数学与哲学的关系等都能以浅显平易的话语娓娓道来,做出极为清晰的解释。
为了把深奥的道理变得更容易为一般人所理解,作者还不时加入非常恰当的比喻。比如在论述数学的真理性问题时,指出对现在的数学家来说问题不在数学结论是不是真理,而在于选择适当的结构。那么这种选择是不是完全随意,没有标准呢?不是。哪些结构要增加,哪些结构要修改,信息仍来自科学实践。如何能把这样重要的道理讲清楚?书中打了一个比喻:“当一个顾客到裁缝那里订做服装时,顾客可以指责尺寸错了,颜色错了,布料错了,等等。
一旦服装设计不针对具体的人,就没有对错问题,只有选择问题。这里有各式各样的服装,请您试穿。你不合适的那种服装,说不定是另一位顾客最喜爱的呢!如果裁缝以此为理由而随心所欲,不调查体型,不研究心理,不适应潮流而乱做一气,那也只有关门。数学家把结构作为研究对象,好比是不再单为固定的顾客加工服装了,他面向普遍的需要,他占领广大的市场。”(引自《数学与哲学》117页)深奥的数学哲学观点通过生活中的常识一解释就变得非常明白易懂了。在书中还提出了许多新颖的观点。如用“模糊的哲学与精确的数学——人类的望远
镜与显微镜”来描述数学与哲学各自的特点;认为“数学的领域在扩大。哲学的地盘在缩小”等等。值得注意的是作者还对自己的部分数学研究工作做了新颖的哲学分析。
如他从自己举例子证明几何定理的研究出发,探讨了关于演绎与归纳统一性问题;用连续归纳原理说明实数系与自然数系的共性等。看完这本书之后,我还查阅了一下张景中院士对于数学教学的观点,觉得也很受启发,比如他认为如果只是把课本编得简单一些,但考试仍然很难,那么学生就不会真正“减负”。他主张“多学少考”,课本不妨略深一点:如果学的深度不够,学生很难体会到数学的趣味;考试简单一些,孩子们才能在轻松中寻找数学的乐趣。此外,在小学和初中的课程设置中要加强对几何的学习,而不是像现在这样轻几何而重数学运算。美国是在数学教育方面花气力最大的国家,但是连美国人自己也承认他们的数学教育收效不大。
他认为,其中一个重要的原因就是他们从20世纪60年代开始在教材的编写中将几何砍掉得太多了。图形不是枯燥的,是容易理解的。一开始学数学,孩子们可能还不能理解数学的很多妙处,因此应该通过图形的运动变化吸引他们的兴趣。随着学习的深入,逐步引导孩子用代数、运算的方式直至微积分的方法解决几何问题。同样,教师对培养孩子们的数学兴趣能起到至关重要的作用。他认为,最糟糕的教学就是让学生在学习一个公式后做几十个类似的题目。数学教学的改革也不能只着眼于讲什么、不讲什么,先讲什么后讲什么,教师应该下功夫研究在课本之外,有没有与众不同的、更好的表达方式。
上一篇: 《平凡的世界》读后感
下一篇: 神奇的警犬读后感